Kohlendioxid auf dem Balkon
Ich habe neulich eine längere Zeitreihe mit CO2-Konzentrationen auf meinem „vorderen” Balkon genommen. Zur Einordnung: Das Messgerät steht so etwa 10 Meter über und 15 Meter neben einer halbwegs viel befahrenen Straße. Ob das wohl etwas mit den wilden Schwankungen zu tun hat, die in der Kurve oben vor allem um den 9.11. herum zu sehen sind? Muss ich meine Einschätzung von neulich, einzelne Autos seien selbst im mittleren Nahbereich im CO2 kaum nachzuweisen (nun: an der frischen Luft, natürlich), revidieren?
Verheizt jemand 100000 Tonnen Kohlenstoff am Tag?
Wer die Kurven von Windgeschwindigkeit[1] und CO2-Konzentration vergleicht, könnte schon glauben wollen, ohne externe Frischluftzufuhr (also bei niedrigen Windgeschwindigkeiten) gehe das CO2 lokal merklich nach oben. Wirklich überzeugen kann mich aber keine Korrelation zwischen den verschiedenen geplotteten Größen.
Darum gehe ich die Frage zunächst deduktiv an: woher könnten die enormen Schwankungen der CO2-Konzentration wohl kommen? Wir reden hier von einer Spanne zwischen 260 ppm und über 400 ppm, wobei es vorkommen kann, dass ich innerhalb von wenigen Stunden 100 ppm mehr CO2 sehe. Der langfristig ansteigende Trend macht mir übrigens weniger Sorgen: Wenn die Photosyntheserate Richtung Winter dramatisch sinkt, die Emission aber z.B. wegen Heizung eher zunimmt, ist das angesichts der beschränkten globalen Durchmischung der Atmosphäre auf der Erde zu erwarten[2], auch wenn das vielleicht nicht gerade innerhalb von zwei Wochen vonstatten gehen sollte.
Mit den Werkzeugen aus dem Artikel zu meiner Heizleistung von neulich kann mensch abschätzen, was so eine Konzentrationsschwankung in einer lokal gut durchmischten Atmosphäre in, sagen wir, verbranntem Kohlenstoff bedeuten würde.
Dafür muss ich erst überlegen, wie viele CO2-Teilchen ΔNCO2, oder der Bequemlichkeit halber eher welche CO2-Stoffmenge ΔnCO2 = NCO2 ⁄ A („in mol”) es braucht, um die Konzentration (in ppm, also CO2-Molekülen pro Million Teilchen insgesamt) innerhalb eines angenommenen Volumens V um das Δcppm zu erhöhen, das ich aus dem Plot ablese. Gemäß meinen Rezepten von neulich ist das:
wobei Vm wieder das Normvolumen ist (22.4 Liter pro mol); das A von oben war die Avogadro-Konstante. Um herauszukriegen, wie viel Kohlenstoff (sagen wir, in Kilogramm) ich verbrennen muss, um diese Änderung quasi durch „frisches“ CO2 hinzukriegen, muss ich das nur noch mit dem Atomgewicht von Kohlenstoff uC multiplizieren.
Das Atomgewicht ist, weil Kohlenstoffkerne meist 6 Protonoen und 6 Neutronen enthalten, mit 12 g/mol gut abgeschätzt (ganz genau ist das nicht, vor allem weil in der Atmosphäre auch etwas C-13 und sogar ein wenig C-14 herumschwebt). In dieser Kopfzahl steht das Gramm aus historischen Gründen. Das Mol wurde so definiert, dass die Zahl der Nukleonen im Kern so in etwa das Atomgewicht liefert, als in der Wissenschaft das cgs-System (aus Zentimeter, Gramm und Sekunde) seine große Zeit hatte. Würde mensch das Mol in den heutigen SI-Zeiten (na gut: die meisten AstronomInnen bleiben dem cgs verhaftet und reden zum Beispiel über Energien in erg) definieren, wäre die Avogadro-Konstante um einen Faktor 1000 (nämlich den Faktor zur SI-Einheit Kilogramm) größer.
Wie auch immer: Wenn ich mir mal vorstelle, dass das, was ich da auf meinem Balkon messe, repräsentativ für den Umkreis von 10 km und bis in eine Höhe von 2 km wäre (mensch ahnt schon: Ich eröffne hier eine Reductio ad absurdum), komme ich auf ein Volumen von
was mit Vm ≈ 0.02 m3 ⁄ mol, einer Änderung von 100 ppm, die mensch als Sprung am 9. und 10.11. sehen kann, sowie der Formel oben auf
oder achzigtausend Tonnen verbrannten Kohlenstoff führt. Das klingt nach richtig viel und ist es auch. Aber das Volumen, das ich hier betrachte, sind eben auch 1200 Kubikkilometer, und wer sich erinnert, dass ein Kubikmeter eines normalen Gase bei Normalbedingungen um die 1 kg wiegt, kann leicht ausrechnen, dass die Luft in diesem Volumen 1.2⋅1012 kg (oder 1.2 Milliarden Tonnen – Luft in großen Mengen ist überhaupt nicht leicht) wiegen wird. Dieser ganze Kohlenstoff macht also ungefähr 0.07 Promille (oder 70 Milionstel) der Masse der Atmosphäre aus, was ganz gut mit den 100 ppm in Teilchen zusammengeht, die wir in die ganze Rechnung reingesteckt haben.
Andersrum gerechnet
Tatsächlich kann mensch die Kohlenstoffmasse, die eine Erhöhung der Teilchenkonzentration in einem Gasvolumen bewirkt, auch so herum abschätzen. Der Umrechnungsfaktor von Teilchen- zu Massenkonzentration ist der Faktor zwischen den Dichten von CO2 und Luft. Das Verhältnis dieser Dichten ist wiederum das der jeweiligen Atommassen, solange jedes Teilchen das gleiche Volumen einnimmt; das schließlich folgt aus der Annahme, dass die Gase ideal sind, was wiederum für unsere Abschätzungen überallhin gut genug ist.
Für CO2 ist das mit den überwiegend vorkommenden Isotopen von Sauerstoff und Kohlenstoff 16 + 16 + 12 = 44, für Luft, wenn wir nur auf den Stickstoff N2 schauen, 14 + 14 = 28. Demnach macht 1 ppm in der Teilchenzahl von CO2 44 ⁄ 28 ≈ 1.6 ppm in der Masse aus, solange die CO2-Konzentration so gering ist, dass tatsächlich N2 die Dichte dominiert.
Andererseits macht Kohlenstoff nur 12 ⁄ 44 ≈ 0.3 an der Masse im CO2 aus, die Zunahme an Kohlenstoff ist demnach nur ein Drittel von dem gerade berechneten 1.6, also etwas wie 0.5. Folglich werden aus 100 ppm Änderung in der Teilchenzahl etwas wie 100⋅0.5 = 50 ppm Änderung in der Masse; wer das genauer rechnet, bekommt auf diese Weise natürlich das gleiche Resultat wie oben raus.
Wie herum mensch das auch rechnet, es ist klar, dass niemand in der kurzen Zeit so viel Kohlenstoff verbrennt. Ein schneller Reality Check: Meine Kohlendioxid-Kopfzahl war, dass die BRD 2/3 Gigatonnen im Jahr emittiert, was mit dem C/CO2-Verhältnis von 0.3 von oben ungefähr 200 Megatonnen Kohlenstoff entspricht, oder irgendwas wie gut 500000 Tonnen am Tag. Damit wäre die Zunahme, die ich hier sehe, rund ein Sechstel des gesamten Kohlenstoffbudgets der BRD, und mehr, wenn der Anstieg schneller als in einem Tag vonstatten geht: Das ist (fast) natürlich Quatsch.
Aber was ist es dann? Noch immer gefällt mir die These ganz lokaler Schwankungen nicht. Wenn hier wirklich nur das CO2 von Autos und Heizungen nicht mehr weggepustet würde, müsste die Korrelation zwischen CO2 und Wind viel deutlicher sein.
Ist es eine die Abgasfahne des GKM?
Nächster Versuch: Rund 12 km westlich von meiner Wohnung läuft das Großkraftwerk Mannheim („GKM“). Wenn das Volllast fährt und meine Wohnung in seine Abgasfahne kommt, könnte das so ein Signal geben?
Nun, so ein Kraftwerk liefert ungefähr 1 Gigawatt elektrische Leistung (wie mir der Wikipedia-Artikel dazu gerade verrät: darunter 15% des deutschen Bahnstroms), was bei einem Wirkungsgrad von 1/3 (ok, bei modernen Kohlekraftwerken ist das noch ein wenig mehr, aber als Kopfzahl taugt es) auf 3 Gigawatt thermische Leistung führt (tatsächlich nennt die Wikpedia eine Bruttoleistung von 2146 MW für das GKM).
Aus den 394 kJ/mol, die bei der Verbrennung von Kohlenstoff frei werden (vgl. den Artikel zu meiner thermischen Leistung) könnte mensch jetzt die CO2-Emission aus der Bruttoleistung ableiten, aber ich bin mal faul und sehe beim WWF nach, der für Kraftwerke dieser Größenordnung ansagt, für eine Kilowattstunde Strom (wir sind dann also wieder bei der Nutzleistung) werde rund ein Kilogramm CO2 emittiert.
Wenn das Kraftwerk also Volldampf (rund ein GW netto) macht, wird es etwa
CO2 emittieren, also etwa 1000 Tonnen, was wiederum mit unserem 0.3-Faktor zwischen Kohlenstoff und CO2 zu einem Kohleverbrauch von 300 Tonnen pro Stunde führt.
Damit leert das Kraftwerk unter Vollast ein Großes Rheinschiff in zehn Stunden – das scheint mir zwar schon sehr schnell zu gehen, ist aber auch nicht gänzlich unplausibel. Gegenrechnung: Das WWF-Dokument von oben nennt 7.7⋅109 kg ⁄ a als CO2-Emission des GKM im Jahr 2006. Mit der Ur-Kopfzahl π ⋅ 1e7 Sekunden pro Jahr übersetzt sich das in eine mittlere Emission von etwa 200 kg pro Sekunde oder gut 1000 Tonnen pro Stunde. Das passt fast zu gut, denn als jemand, der das Kraftwerk von seiner Leseecke aus sehen kann, kann ich zuverlässig sagen, dass das Ding keineswegs durchläuft. Andererseits hatte das Kraftwerk 2006 auch noch einen Block weniger, und überhaupt ist in der Rechnung genug Luft für Stillstandszeiten.
Nehmen wir …