In Forschung aktuell vom 18.1. ging es um den Ausbruch des Hunga Tonga Hunga Ha'apai (spätestens seit dem Ausbruch des Eyjafjallajökull ist klar, dass viele Vulkane großartige Namen haben). Darin hieß es, dass bei der Eruption wohl um die 400'000 Tonnen Schwefeldioxid entstanden sind, und dass das nicht viel sei, weil ein wirklich großer Vulkanausbruch – als Beispiel dient der Pinatubo-Ausbruch von 1991 – 20 Millionen Tonnen Schwefeldioxid emittiert.
Bei dieser Gelegenheit ist mir aufgefallen, dass mir diese 20 Millionen Tonnen spontan alarmierend wenig sagten. Und drum dachte ich mir, ich sollte mal ein paar Kopfzahlen zu eher großen Massen und – weil ein Kubikmeter Wasser eine Masse von einer Tonne hat, hängt das eng zusammen – Volumen sammeln.
Einfach war noch, die 20 Megatonnen mit meiner praktischen Kohlendioxid-Kopfzahl von neulich, 2/3 Gigatonnen CO₂ pro Jahr aus der BRD, zu vergleichen. Nun ist SO₂ eine ganz andere Nummer als CO₂ (ich erinnere mich an atemberaubende Vulkanbesuche und den weit größeren Schrecken des Chemiepraktikums), aber als Vorstellung finde ich es hilfreich, dass so ein ordentlicher Vulkanausbruch in etwa so viel Schwefeldioxid freisetzt wie die BRD in zehn Tagen (nämlich: ein dreißigstel Jahr) Kohlendioxid.
Was SO₂-Emissionen selbst angeht, sieht das natürlich ganz anders aus; laut einer Grafik des Umweltbundesamts hat die BRD am Höhepunkt der Saure-Regen-Bekämpfung 1990 lediglich knapp 6 Megatonnen pro Jahr emittiert, also rund ein Viertel Pinatubo, und ist jetzt bei einer halben Megatonne, also in etwa einem Hunga Tonga Hunga Ha'apai (der Name begeistert mich erkennbar). In diesem Zusammenhang gar nicht erwartet hätte ich, dass laut einer IMO-Studie von 2016 der Schiffsverkehr weltweit nur 10 Mt Schwefeldioxid emittiert haben soll, also kaum doppelt so viel wie die BRD 1990, und inzwischen, im Rahmen einer in einschlägigen Kreisen offenbar besorgt beäugten Initiative namens IMO 2020, noch eine ganze Ecke weniger emittieren dürfte.
Nur vorsorglich: Wer den DLF-Beitrag gelesen hat, mag sich erinnern, dass der Pinatubo das Weltklima um ein halbes Kelvin abgekühlt haben wird. Die sechs Megatonnen Schwefeldioxid aus der 1990er BRD haben jedoch sicher nicht ein achtel Kelvin ausgemacht, und zwar, weil sie fast ausschließlich bodennah entstanden sind. Damit Schwefeldioxid ordentlich klimawirksam wird, muss mensch es in die Stratosphäre bringen. Das ist für einen zünftigen Vulkan kein Problem. Und wäre leider auch für Menschen möglich.[1]
Wenn sich der Schwefel des Pinatubo wie im Foto oben niederschlägt, wie viel ist das dann? Nun, erstmal ist der Masseanteil von Schwefel im SO₂ recht leicht auszurechnen, denn üblicher Schwefel hat Atommasse 32, während Sauerstoff bei 16 liegt, zwei davon also auch bei 32. Damit ist die Hälfte der Masse von Schwefeldioxid Schwefel, und der Pinatubo hat 10 Megatonnen Schwefel ausgespuckt. Bei einer Dichte von 2000 kg ⁄ m3 (hätte ich geringer eingeschätzt, muss ich sagen) macht das 5⋅106 m3 aus und würde einen Würfel von (5⋅106)1 ⁄ 3 oder runden 170 Metern Kantenlänge füllen.
Um so ein Volumen einzuordnen, erkläre ich nachträglich den Neckar-Abfluss aus dem Flächen-Post, 150 m3 ⁄ s im Jahresmittel, zur Kopfzahl. Dann entspricht der ganze Katastrophenschwefel des Pinatubo dem Wasser, das in 30 Kilosekunden (coole Einheit: gerade in der Röntgenastronomie wird die viel verwendet) oder knapp 10 Stunden durchläuft. Und das alles Schwefel. Whoa. Vielleicht nehmen wir doch lieber den nächstgrößeren Fluss:
Im Rhein bei Köln fließen bei Normalwasserstand 2000 m3 ⁄ s (hatte ich nicht im Kopf, will ich mir als ein Dutzend Neckare merken), und da bräuchte der Pinatubo-Schwefel 2500 Sekunden oder eine Dreiviertelstunde. Immer noch beängstigend. Legen wir also nochmal eins drauf und nehmen den Amazonas. Der führt an der Mündung 70-mal mehr Wasser als der Rhein (was ungefähr 1000 Neckare wären). In dem wäre der Pinatubo-Schwefel in so etwa einer halben Minute durch. Puh. Aber auch nicht sehr tröstlich, denn, wie die Wikipedia ausführt, ist der Amazonas
der mit Abstand wasserreichste Fluss der Erde und führt an der Mündung mehr Wasser als die sechs nächstkleineren Flüsse zusammen und ca. 70-mal mehr als der Rhein.
Etwas anfassbarer, gerade für Menschen, die dann und wann im URRmEL sind, ist ein Transportcontainer. Die kurzen davon („TEU“) wiegen leer 2300 kg, voll fast 25 Tonnen und fassen[2] 33 m3. Unsere 5 Millionen Kubikmeter Pinatubo-Schwefel entsprichen also rund 150'000 solcher Container – oder rund 1000 ziemlich langen Güterzügen. Aber das Volumen wäre hier nicht mal das Problem: Angesichts des 25-Tonnen-Limits braucht es für die 10 Megatonnen Schwefel mindestens 400'000 Container (die nicht ganz voll sein dürfen).
Für solche Containerzahlen braucht es Schiffe. Eines wie die Ever Given, die im letzten März im Suezkanal steckenblieb und vorher schon 2019 eine (liegende) Passagierfähre in Blankenese umgenietet hatte, trägt rund 20'000 TEUs. Für den Pinatubo-Schwefel bräuchte es mithin naiv gerechnet 20 Ever Givens[3].
Beim Schiffgucken bin ich leider in der Wikipedia versunken. Als ich wieder rausgekommen bin, hatte ich albern viel Zeit mit der Liste der größten Schiffe verbracht und mir vorgekommen, mir als Kopfzahlen für große Massen die Titanic (50'000 Tonnen; moderne Kreuzfahrtschiffe oder Flugzeugträger kommen auch nur auf rund 100'000) und richtig große Tanker (500'000 Tonnen) zu merken, von denen entsprechend einer reichen würde für das angemessen verdichtete Schwefeldioxid vom Hunga Tonga Hunga Ha'apai. Und wo ich so weit war, habe ich festgestellt, dass ich die die 3000 Tonnen der großen Rheinschiffe aus meiner Kraftwerks-Abschätzung schon wieder vergessen hatte. Das erkläre ich jetzt auch zu einer Kopfzahl, im Hinblick auf die Sammlung, die ich demnächst anlegen werde.
Während meiner Wikipedia-Expedition hat mich ein Artikel ganz besonders fasziniert: Fruchtsafttanker. Oh! Ein ganzes Schiff voll Orangensaft! Ein Paradies!
Es gibt, so sagt die Wikipedia, „weltweit weniger als 20 Schiffe“, die als Fruchtsafttanker betrieben werden. Aber dafür trägt eines davon gleich mal über 10'000 Kubikmeter Saft. Dass es so etwas wirklich gibt, könnte mich glatt zum Kapitalismus bekehren.
[1] | Das heißt nicht, dass Seiteneffekte der Kohleverbrennung nicht doch kühlende Effekte gehabt hätten; vgl. etwa Klimawirkung von Aerosolen. Es gibt ernsthafte Spekulationen (die rauszusuchen ich jetzt zu faul bin), dass die CO₂-bedingte Erderwärmung erst ab den 1970er Jahren so richtig auffällig wurde, weil vorher erstaunliche Mengen Kohlenruß in der Atmosphäre waren Das große Fragezeichen dabei ist, ob dessen kühlende Wirkungen (Nebel- und Wolkenbildung) seine heizenden Wirkungen (etwa, indem er Schneeflächen verdreckt und damit ihre Albedo reduziert oder vielleicht sogar ähnliches mit Wolken anstellt) wirklich überwiegen. |
[2] | Das Containervolumen ist über „Zwanzig Fuß mal ungefähr zwei Meter mal ungefähr zwei Meter als 2⋅2⋅20 ⁄ 3 oder rund 25 Kubikmeter so gut abschätzbar, dass ich da keine Kopfzahl draus machen würde. |
[3] | In Wahrheit braucht es deutlich mehr als 20 Ever Givens. Als Tragfähigkeit des Schiffs gibt die Wikipedia nämlich 200'000 Tonnen (dabei ist mir wurst ob metrisch oder long), was bei 20'000 Containern bedeutet, dass ein Container im Schnitt nur 10 und nicht 25 Tonnen wiegen darf. Das reime ich mir so zusammen, dass einerseits auf diesen Schiffen vor allem 40-Fuß-Container fahren werden, die aber nur 30 Tonnen wiegen dürfen, also 2/3 der Maximaldichte der 20-Fuß-Container erlauben – und damit, dass in Containern normalerweise eher Stückgut ist, und selbst wenn an dem viel Metall sein sollte – ohnehin unwahrscheinlich in unserer Plastikgesellschaft – wirds normalerweise schwierig sein, das Zeug so eng zu packen, dass es am Schluss auch nur die Dichte von Wasser hat. |
Zitiert in: Die „Klima Arena“ in Sinsheim Kopfzahlen: Plastikproduktion